SOME ℵ₀-BOUNDED SUBSETS OF STONE-ČECH COMPACTIFICATIONS

BY R. GRANT WOODS

ABSTRACT

We characterize the maximal m-bounded extension of an arbitrary completely regular Hausdorff space X. The other principal results are: Theorem. Let X be a locally compact, σ -compact non-compact space with no more than 2^{\aleph_0} zero-sets. Then assuming the continuum hypothesis, $\beta X - X$ can be written as the union of $2^{2\aleph_0}$ pairwise disjoint, dense \aleph_0 -bounded subspaces. Theorem. Let X be a locally compact, σ -compact metric space without isolated points. Then both the set of remote points of βX and the complement of this set in $\beta X - X$ are \aleph_0 -bounded.

Introduction

All spaces are assumed to be completely regular Hausdorff spaces. Throughout this paper we shall employ the notation and terminology of the Gillman-Jerison text [3]. In particular, the symbol βX denotes the Stone-Čech compactification of the space X. The symbol [CH] preceding the statement of a theorem will indicate that the continuum hypothesis $(\aleph_1 = 2^{\aleph_0})$ is used in the proof of the theorem. The cardinal 2^{\aleph_0} will be denoted by the letter c. The cardinality of a set S will be denoted by |S|.

Let m be any cardinal number. In [4], the authors define a space X to be m-bounded if every subset of X of cardinality no greater than m is contained in a compact subset of X. In §1 we show that every space X has a maximal m-bounded extension, and give a characterization of this extension. The other principal results in this paper are as follows:

2.7 THEOREM [CH]. Let X be a locally compact, σ -compact, non-compact space with no more than c zero-sets. Then $\beta X - X$ can be written as the union of $\overset{\text{ps}}{2}^{c}$ disjoint, dense \aleph_0 -bounded subspaces.

3.5 THEOREM. Let X be a locally compact, σ -compact metric space without isolated points. Then both the set of remote points of βX and the complement of this set in $\beta X - X$ are \aleph_0 -bounded spaces.

1. The maximal m-extension of a space

The following result of van der Slot and Herrlich appears as a corollary to Theorem 1 of $\lceil 5 \rceil$.

- 1.1 Theorem. Let \mathscr{P} be a topological property with the following properties:
- (a) If each member of a family $\mathfrak J$ of spaces has $\mathscr P$, then the product space $\Pi_{F\in \mathfrak J}F$ has $\mathscr P$.
 - (b) If X has \mathcal{P} and S is a closed subspace of X, then S has \mathcal{P} .
 - (c) Compact spaces have P.

Then for each space X there exists a unique "maximal \mathcal{P} -extension" of X, denoted by γX , with the following properties

- (1) γX contains a dense copy of X
- (2) γX has \mathscr{P}
- (3) If Y has \mathscr{P} and if $f: X \to Y$ is continuous, then f can be continuously extended to a function $f^{\gamma}: \gamma X \to Y$.
 - 1.2 COROLLARY. Every space X has a maximal m-bounded extension mX.

PROOF. Lemma 4 of [4] says that m-boundedness has property (a) of the above theorem, and it is obvious that m-boundedness has properties (b) and (c) also.

1.3 THEOREM. The space mX can be identified with the set S of all points of βX that belong to the βX -closure of some subset of X of cardinality no greater than m (m is assumed to be infinite).

PROOF. Let T be a subset of S of cardinality no greater than m. For each $p \in T$ there exists a subset A(p) of X such that $|A(p)| \le m$ and $p \in cl_{\beta X}A(p)$. Thus

$$T\subseteq\bigcup_{p\in T}cl_{\beta X}A(p)\subseteq cl_{\beta X}\ \bigcup_{p\in T}A(p)$$

But $|\bigcup_{p \in T} A(p)| \le m \cdot m = m$ and so $\operatorname{cl}_{\beta X} [\bigcup_{p \in T} A(p)] \subseteq S$. Hence $\operatorname{cl}_S T$ is compact and so S is m-bounded.

Let Y be m-bounded, and let $f: X \to Y$ be continuous. Thus f maps X into βY and so there exists a continuous map $f^{\beta}: \beta X \to \beta Y$ whose restriction to X is f ([3], 6.51). Let $f^{\beta} | S = f^{\gamma}$. To prove that property (3) of Theorem 1.1 holds,

it suffices to show that $f^{\beta}[S] \subseteq Y$. Let D be a subset of X of cardinality no greater than m, and let $p \in \operatorname{cl}_{\beta X} D$. Now $f^{\beta}[\operatorname{cl}_{\beta X} D] \subseteq \operatorname{cl}_{\beta Y} f[D]$ as f^{β} is continuous. However, $|f[D]| \leq m$ and so $\operatorname{cl}_Y f[D]$ is compact. Thus $\operatorname{cl}_{\beta Y} f[D] = \operatorname{cl}_Y f[D] \subseteq Y$, and so $f^{\gamma}(p) \in Y$. Thus $f^{\gamma}[S] \subseteq Y$, and the theorem follows.

2. A decomposition of $\beta X - X$

The principal result in this section is Theorem 2.7, which is stated in the introduction.

Recall that a point y of the space Y is called a P-point of Y if every G_{δ} -set of Y that contains y is a neighborhood of y. A discussion of P-points can be found in [3]. It has been proved in Theorem 4.2 of [8] that, assuming the continuum hypothesis, $\beta N - N$ contains a dense set of 2° P-points (N denotes the countable discrete space). The following result is an immediate consequence of this and of problems 9.D.1 and 9.M.2 of [3].

- 2.1 THEOREM [CH]. Let X be locally compact, realcompact, and non-compact. Then every non-empty open subset of $\beta X X$ contains $2^{c}P$ -points of $\beta X X$.
- 2.2 NOTATION. Let us denote the family of zero-sets of X by $\mathscr{Z}(X)$. If A is a closed subset of the space X, we shall denote the set $(\operatorname{cl}_{\beta X}A) X$ by the symbol A^* . In particular, $X^* = \beta X X$. Finally, P(X) will denote the set of P-points of the space X.

Recall that a space X is called an F-space if every cozero-set of X is C^* -embedded in X. F-spaces are discussed in chapter 14 of $\lceil 3 \rceil$.

2.3 Lemma. Let Y be a compact F-space, and let D be a set of P-points of Y. Let S be the set of all points of Y that are in the Y-closure of some countable subset of D. Then both S and Y-S are \aleph_0 -bounded.

PROOF. The proof that S is \aleph_0 -bounded is identical to the proof used in 1.3 to show that mX is m-bounded.

Suppose that Y - S is not \aleph_0 -bounded. Then there exists a countable subset A of Y - S such that $S \cap \operatorname{cl}_Y A \neq \emptyset$. It follows from the definition of S that there exists a countable subset E of D such that $\operatorname{cl}_Y E \cap \operatorname{cl}_Y A \neq \emptyset$. Since $\operatorname{cl}_Y E \subseteq S$ we have $A \cap \operatorname{cl}_Y E = \emptyset$. As each point of E is a E-point of E, no point of E is the limit point of a countable subset of E, and so $E \cap \operatorname{cl}_Y A = \emptyset$. Thus E and E are disjoint closed subsets of the countable space $E \cup A$, and hence are disjoint zero-sets of $E \cup A$. But $E \cup A$ is C^* -embedded in the compact E-space E by

problem 14.N.5 of [3]; hence by theorem 6.9(a) of [3] it follows that $cl_Y(E \cup A) = \beta(E \cup A)$. Theorem 6.5 IV of [3] says that disjoint zero-sets of the space X have disjoint closures in βX ; thus $cl_Y E \cap cl_Y A = \emptyset$, which is a contradiction. Thus Y - S is \aleph_0 -bounded.

- 2.4 DEFINITION. Let \mathcal{W} be a non-empty family of subsets of a space Y. Then \mathcal{W} is called a P-family of Y it is satisfies the following two conditions:
 - (i) Each member of W is a dense subset of Y consisting of \aleph_1 P-points of Y.
 - (ii) Distinct members of W are disjoint.
- 2.5 THEOREM [CH]. Let X be locally compact, realcompact and noncompact, and let $|\mathcal{Z}(X)| = c$. Then there exists a P-family of X^* whose cardinality is 2^c .

PROOF. Since $|\mathscr{Z}(X)| = c$, the family $\mathfrak{B} = \{X^* - Z^* : Z \in \mathscr{Z}(X)\}$ has cardinality c. It follows from theorem 6.5(b) of [3] that \mathfrak{B} forms a base for the open subsets of X^* , and hence by 2.1 we can find a dense subset D of \aleph_1 P-points of X^* . Hence there is at least one P-family of X^* (namely $\{D\}$).

Let \mathscr{S} be the collection of all P-families of X^* , and order \mathscr{S} by inclusion. The partially ordered set \mathscr{S} contains a maximal chain \mathscr{C} , and it is easy to see that $\mathfrak{F} = \bigcup_{\mathscr{K} \in \mathscr{C}} \mathscr{W}$ is a P-family of X^* . We claim that $|\mathfrak{I}| = 2^c$.

Suppose that $|\mathfrak{F}| < 2^c$. As each set belonging to \mathfrak{F} contains \aleph_1 points, it is evident that the set $S = \bigcup_{F \in \mathfrak{F}} F$ contains $\aleph_1 \cdot |\mathfrak{F}|$ points, and obviously $\aleph_1 \cdot |\mathfrak{F}| < 2^c$. Let $(C_\beta)_{\beta < \omega_1}$ be an indexing of \mathfrak{B} (ω_1 is the first uncountable ordinal). By 2.1 C_0 contains 2^c P-points, so we can select $p_0 \in [C_0 \cap P(X^*)] - S$. Let γ be a countable ordinal, and for each $\beta < \gamma$, suppose we have selected $p_\beta \in [C_\beta \cap P(X^*)] - [S \cup \{p_\alpha\}_{\alpha < \beta}]$. As $|S \cup \{p_\beta\}_{\beta < \gamma}| < 2^c$, by 2.1 we can find $p_\gamma \in [C_\gamma \cup P(X^*)] - [S \cup \{p_\beta\}_{\beta < \gamma}]$. Let $D = (p_\beta)_{\beta < \omega_1}$. Then $\mathfrak{F} \cup \{D\}$ is a P-family of X^* , and $\mathscr{C} \cup \{\mathfrak{F} \cup \{D\}\}$ is a chain in \mathscr{S} properly containing \mathscr{C} . This contradicts the maximality of \mathscr{C} , and so $|\mathfrak{F}| = 2^c$.

2.6 Lemma. Let $(X_{\alpha})_{\alpha}$ be a family of m-bounded subspaces of a space Y. Then $\bigcap_{\alpha} X_{\alpha}$ is a m-bounded subspace of Y.

PROOF. Trivial.

We can now prove Theorem 2.7 as stated in the introduction.

PROOF OF 2.7. As σ -compact spaces are Lindelöf and hence realcompact, by 2.5 we can find a P-family \mathfrak{F} of X^* with $|\mathfrak{F}| = 2^c$. Let Σ denote the first ordinal

of cardinality 2^c , and set $\mathfrak{F} = (F_{\alpha})_{\alpha < \Sigma}$. For each $\alpha < \Sigma$, let S_{α} be the set of all points of X^* that are in the X^* -closure of some countable subset of F_{α} . Evidently S_{α} is \aleph_0 -bounded. Since X is locally compact, σ -compact, and non-compact, it follows from theorem 14.27 of [3] that X^* is a compact F-space. If $\alpha \neq \beta$ then $S_{\alpha} \cap F_{\beta} = \emptyset$ as no point of F_{β} is a limit point of any countable subset of F_{α} (each point of F_{β} being a F-point of F_{β}). As $F_{\beta} = \emptyset$ is F_{β} -bounded by 2.3, it follows that F_{β} -closures of countable subsets of F_{β} are disjoint from F_{α} , and so $F_{\alpha} \cap F_{\beta} = \emptyset$. Thus $F_{\alpha} \cap F_{\beta} \cap F_{\beta} = \emptyset$ is a family of $F_{\alpha} \cap F_{\beta} \cap F_{\beta} = \emptyset$. Thus $F_{\alpha} \cap F_{\beta} \cap F_{\beta} \cap F_{\beta} = \emptyset$ is a family of $F_{\alpha} \cap F_{\beta} \cap F_{\beta} \cap F_{\beta} = \emptyset$.

Consider the space $H = X^* - \bigcup_{1 < \alpha < \Sigma} S_{\alpha}$. Evidently $F_0 \subseteq H$ so H is dense in X^* . By 2.3 $X^* - S_{\alpha}$ is \aleph_0 -bounded for each α , and hence by 2.6 H is \aleph_0 -bounded. Thus $(S_{\alpha})_{1 < \alpha < \Sigma} \cup \{H\}$ is the desired decomposition of X^* .

2.7 REMARK. M. E. Rudin has shown in [7] that there are non-P-points of N^* that are not limit points of any countable set of P-points of N^* . Hence if X = N in the above theorem, it is evident that $\bigcup_{\alpha < \Sigma} S_{\alpha} \neq N^*$.

3. The remote points of βX .

3.1 DEFINITION. A point $p \in \beta X$ is called a remote point of βX if p is not in the βX -closure of any discrete subspace of X.

Remote points were first defined by Fine and Gillman [2], who demonstrated, assuming the continuum hypothesis, the existence of a set of remote points in βR that is dense in R^* (R denotes the space of real numbers). Plank [6] has characterized the remote points of βX in the case where X is a separable metric space without isolated points. The following result is a combination of theorems 5.4 and 5.5 of [6].

3.2 Theorem. (Plank). If X is a locally compact, σ -compact, non-compact metric space without isolated points, then the set of remote points of βX is precisely the set

$$\bigcap_{Z\in\mathcal{Z}(X)} \left[X^* - (bd_X Z)^* \right],$$

where $\operatorname{bd}_X Z$ denotes the topological boundary (in X) of Z. Assuming the continuum hypothesis, the remote points of βX form a dense subset of X^* of cardinality 2^c .

We shall denote the set of remote points of βX by $T(X^*)$. Obviously $T(X^*) \subseteq X^*$ We wish to show that both $T(X^*)$ and $X^* - T(X^*)$ are \aleph_0 -bounded spaces.

To do this, we need some information concerning the structure of locally compact, σ -compact spaces. The following result is well known; see, for example, page 241 of [1].

3.3 THEOREM. A locally compact, σ -compact space can be written in the form $\bigcup_{n=0}^{\infty} V_n$, where for each n, V_n is open in X and $\operatorname{cl}_X V_n$ is compact and contained in V_{n+1} .

The symbol " V_n " will henceforth be used with the above meaning. The following lemma also appears in [9].

3.4 LEMMA. Let $(A_n)_{n\in N}$ be a sequence of closed subsets of the locally compact, σ -compact space X. For each $n\in N$ define the non-negative integer k_n by

$$k_n = \min\{j \in N : A_n \cap V_j \neq \emptyset\}.$$

If $\lim_{n\to\infty} k_n = \infty$, then $\bigcup_{n=0}^{\infty} A_n$ is closed in X.

PROOF. Let $p \in \operatorname{cl}_X(\bigcup_{n=0}^\infty A_n)$ and let U be an open subset of X containing p. There exists $i \in N$ such that $p \in V_i$; thus $(U \cap V_i) \cap (\bigcup_{n=0}^\infty A_n) \neq \emptyset$. As $\lim_{n \to \infty} k_n = \infty$, there exists $m \in N$ such that n > m implies $A_n \cap V_i = \emptyset$. Thus $(U \cap V_i) \cap (\bigcup_{n=0}^m A_n) \neq \emptyset$, and so $U \cap (\bigcup_{n=0}^m A_n) \neq \emptyset$. As U was an arbitrary open set containing p, it follows that p belongs to the closed set $\bigcup_{n=0}^m A_n$, and so $p \in \bigcup_{n=0}^\infty A_n$. Thus $\bigcup_{n=0}^\infty A_n$ is closed.

We are now in a position to prove Theorem 3.5, which is stated in the introduction. Recall that X is locally compact if and only if $\beta X - X$ is compact.

PROOF OF 3.5. We first prove that $T(X^*)$ is \aleph_0 -bounded. Let $D = (p_n)_{n \in N}$ be any countable subset of $T(X^*)$, and let $\mathscr{A}(p_n)$ be the z-ultrafilter on X associated with p_n (see [3], chapter 6). Put $\mathfrak{F} = \bigcap_{i=0}^{\infty} \mathscr{A}(p_i)$ and set $K = \bigcap_{F \in \mathfrak{F}} F^*$. Then $p_n \in F^*$ for each $n \in N$ and each $F \in \mathfrak{F}$, and so D is a subset of K, which is closed in the compact space X^* and hence is compact. It thus suffices to show that $K \subseteq T(X^*)$. Suppose that $q \notin T(X^*)$. By 3.2 there exists a closed nowhere dense subset Z of X such that $q \in Z^*$. Since p_n is a remote point, it follows that $Z \notin \mathscr{A}(p_n)$ for each $n \in N$, and so we can choose $A_n \in \mathscr{A}(p_n)$ such that $Z \cap A_n = \emptyset$. Since $\operatorname{cl}_X V_n$ is compact, we can without loss of generality assume that $A_n \subseteq X - V_n$ for each $n \in N$ (see (3.3)). It follows from 3.4 that $\bigcup_{i=0}^{\infty} A_i$ is closed in X. As closed subsets of metric spaces are zero-sets and as $A_n \subseteq \bigcup_{i=0}^{\infty} A_i$ for each $n \in N$, evidently $\bigcup_{i=0}^{\infty} A_i \in \mathfrak{F}$. Thus $K \subseteq (\bigcup_{i=0}^{\infty} A_i)^*$. But $Z \cap (\bigcup_{i=0}^{\infty} A_i) = \emptyset$ so

by 6.5 (IV) of [3] we have $Z^* \cap (\bigcup_{i=0}^{\infty} A_i)^* = \emptyset$. Thus $q \notin K$ and so $K \subseteq T(X^*)$.

We next prove that $X^* - T(X^*)$ is \aleph_0 -bounded. Let $D = (p_n)_{n \in N}$ be a countable subset of $X^* - T(X^*)$. Using 3.2 we can, for each $n \in N$, find a closed nowhere dense subset Z_n of X such that $p_n \in Z_n^*$, and without loss of generality we can assume that $Z_n \subseteq X - V_n$, since $\operatorname{cl}_X V_n$ is compact. It follows from 3.4 that $\bigcup_{i=0}^{\infty} Z_i$ is closed, and obviously $p_n \in (\bigcup_{i=0}^{\infty} Z_i)^*$ for each $n \in N$. Thus $\operatorname{cl}_{X^*} D \subseteq (\bigcup_{i=0}^{\infty} Z_i)^*$. Applying the Baire category theorem to the locally compact space X, we see that $\operatorname{int}_X(\bigcup_{i=0}^{\infty} Z_i) = \emptyset$; thus by 3.2 we have

$$(\bigcup_{i=0}^{\infty} Z_i)^* \subseteq X^* - T(X^*).$$

Hence $\operatorname{cl}_{X^*} D$ is a compact subset of $X^* - T(X^*)$.

REFERENCES

- 1. James Dugundji, Topology, Allyn and Bacon, Boston, 1966.
- 2. N. Fine and L. Gillman, Remote points in βR, Proc. Amer. Math. Soc. 13 (1962), 29-36
- 3. L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, New York, 1960.
- 4. S. L. Gulden, W. M. Fleischman, and J. H. Weston, *Linearly ordered topological spaces*, Proc. Amer. Math. Soc. 24 (1970), 197-203.
- 5. H. Herrlich and J. van der Slot, Properties which are closely related to compactness, Indag. Math. 29 (1967), 524-529.
- 6. D. L. Plank, On a class of subalgebras of C(X) with applications to $\beta X X$, Fund. Math. 64 (1969), 41-54.
- 7. M. E. Rudin, Types of Ultrafilters, Topology Seminar Wisconsin, 1965 (Princeton University Press), 147-151.
- 8. W. Rudin, Homogeneity problems in the theory of Cech compactifications, Duke Math. J. 23 (1956), 409-419.
- 9. R. G. Woods, A Boolean algebra of regular closed subsets of βX —X, to appear in Trans. Amer. Math. Soc.

University of Manitoba Winnipeg, Canada